C.U.SHAH UNIVERSITY Winter Examination-2018

Subject Name: Electromagnetics

Subject Code: 4TE06ELM1		Branch: B.Tech (Electrical)	
Semester: 6	Date: 19/10/2018	Time: 02:30 To 05:30	Marks: 70
Instructions:			
(1) Use of	of Programmable calculator	& any other electronic instrume	ent is prohibited.

- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

- Avector indicates both magnitude and direction. Determine whether the given statement is true or false.
- Points P and Q are located at (1, 2, -3) and (-4, 0, 5). Calculate the distance between P and Q.
- 3) Give any two examples of a scalar and a vector.
- 4) If A is a vector, then $A \times A = A^2$. Determine whether given statement is true or false.
- 5) Give the types of co-ordinate system.
- 6) Find the magnitude of the vector $\vec{A} = 3\vec{a}_x + 4\vec{a}_y + 5\vec{a}_z$
- 7) If Aand B are the vectors, then A .B= B.A. Determine whether the given statement is true or false.
- 8) Gauss Law is applicable to only closed surface. Determine whether the given statement is true or false.
- 9) What is the unit of magnetic permeability?
- 10) Find the cosine angle between $2a_x$ and $-a_x + 2a_y + 7a_z$?
- **11**) What is the unit of electric field intensity?
- 12) For any vector A unit vector $\vec{a}_A \cdot \vec{a}_A =$

Page 1 || 3

(14)

- 13) If A and B are the vectors, then $A \times B = B \times A$. Determine whether the given statement is true or false
- **14**) Find the cylinindrical coordinates from given cartesian co-ordinates P(-2, 6, 3).

Attempt any four questions from Q-2 to Q-8

Q-2Attempt all questions(14)(a)Determine the force between two charges $-3 \times 10^{-4}C$ at P(1,2,3) and $10^{-4}C$ at Q
(2,0,5) in a vaccum.07(b)If Q_1 and Q_2 are the point charges are located at points having position vectors
 \vec{r}_1 and \vec{r}_2 , derive the equation of force \vec{F}_{12} on charge Q_2 due to Q_1 .07

Q-3 Attempt all questions

- (a) Given the vectors $\vec{M} = -10\vec{a}_x + 4\vec{a}_y 8\vec{a}_z$ and $\vec{N} = 8\vec{a}_x + 7\vec{a}_y 2\vec{a}_z$. Find i) A unit vector in the direction of $-\vec{M} + 2\vec{N}$. ii) The magnitude of $\vec{N} - 3\vec{M}$.
- (b) Derive the equation for electric field intensity \vec{E} for a finite line charge with a **07** uniform charge density ρ_L .

Q-4 Attempt all questions

(14)

(14)

(a) Derive the equation for electric flux density $\vec{D} = \frac{Q}{4\pi r^2} \vec{a}_r$, where Q is the point charge. 07

(b) If **A** and **B** are the vectors, explain its dot product and cross product operation. 07

(b) Derive the equation of force $\vec{F} = Id\vec{L} \times \vec{B}$, where $d\vec{L}$ =Length of differential 07 element, \vec{B} =magnetic flux density, I= current through differential element

Q-6		Attempt all questions	(14)
	(a)	The field quantities are given by	07

Page 2 || 3

$$\vec{P} = 2\vec{a}_x - \vec{a}_z$$

$$\vec{Q} = 2\vec{a}_x - \vec{a}_y + 2\vec{a}_z$$

$$\vec{R} = 2\vec{a}_x - 3\vec{a}_y + \vec{a}_z$$
Determine i) $(\vec{P} + \vec{Q}) \times (\vec{P} - \vec{Q})$ ii) $\vec{Q} \cdot \vec{R} \times \vec{P}$
Express the DEL (∇) operator in Cartesian and Circular cylindrical co-ordinates. **07 Attempt all questions**
(14)
For a co-axial cable at high frequencies, give the equation for capacitance, **07**
conductance, inductance and resistance.
$$\vec{A} = 2\vec{a}_x + \vec{a}_y - 3\vec{a}_z, \ \vec{B} = \vec{a}_y - \vec{a}_z, \ \vec{C} = 3\vec{a}_x + 5\vec{a}_y + 7\vec{a}_z, \ \text{Determine}$$
i) $\vec{A} - 2\vec{B} + \vec{C}$

ii) $\vec{C} - 4(\vec{A} + \vec{B})$

(b)

(a)

(b)

Q-7

Q-8Attempt all questions(14)(a)Explain position vector and distance vector.07(b)Find the gradient of the following scalar fields:07

i)
$$U = x^2 y + xyz$$
 ii) $V = pz \sin \phi + z^2 \cos^2 \phi + \rho^2$

